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ABSTRACT 
The probabilistic analogue of the Banach contraction principle as given by Sehgal and Bharucha Reid  states that 

a contraction mapping on a complete Menger Space (X, F, min)  has a unique fixed point ((X,  , min) = (X, F, t) 

where t(a,b)= min{a,b}). Later it was realized that t-norm ‘min’ could be replaced by weaker t-norms. Sherwood 

showed that the above result is an exception rather than a rule: specifically for any Archimedean t-norm, there 

exists a complete Menger space and a contraction by Sehgal on (X, F) which has no fixed point. In this paper 

some fixed point theorem established in Menger space by using new concept of dual contraction. 

 

INTRODUCTION  
A number of authors have defined various contractive type self-mapping of metric spaces which are 

generalizations of well-known Banach contraction principle and have used the same technique. The contractive 

condition on maps produce suitable iterations, which give Cauchy sequence and a hypothesis of completeness in 

the range containing these sequences. These sequences produce a limit point, which becomes a fixed point of the 

mapping. The contractive condition on mapping has two roles; first they assure that certain iterations are Cauchy, 

and second, they assure the uniqueness of fixed point.  

 

Some  common  fixed  point  theorems  using  sequence  which  are   not necessarily obtained as a sequence of 

iterates of certain mappings are motivated by a result of Jungck [1]. He proved that a continuous self-mapping f 

of a complete metric space (X,d) has a fixed point provided there exists  

 

(0,1)q and a mapping :g X X  which commute with f and satisfies  

(a) ( ) ( )g X f X  

(b) ( , ) ( , )d gx gy qd fx fy , for all ,x y X . Then g and f  have unique common fixed point. 

 

There have been a large number of generalization of metric space.  

One such generalization is Menger probabilistic space introduced in 1942 [2] by K.  

Menger. A probabilistic metric space (PM space) is an ordered pair (X,F), X is a nonempty set and  is mapping 

s.t. 

 

,

,

, ,

, , ,

(I)    ( ) 1   0 iff 

(II)   (0) 0

(III)  

(IV)  ( ) 1 ,  ( ) 1 ( ) 1

p q

p q

p q q p

p q q r p r

F x x p q

F

F F

F x F y F x y

   





    

 

 



  
[Tripathi* 4(9): September, 2017]                                                                             ISSN 2349-4506 
  Impact Factor: 2.785 

Global Journal of Engineering Science and Research Management 

http: //  www.gjesrm.com        © Global Journal of Engineering Science and Research Management 

 [108] 

Where :[01] [01] [01]t    is a t-norm function such that t is non decreasing, 

 

Commutative, associative and  

 

A Menger PM space is a triple (X,F;t) where (X,F) is a PM space and  t is  t-norm such that 

 , , ,( ) ( ), ( )     , 0p r p q q rF x y t F x F y x y     

 

In 1960. B. Schweizer and A. Sklar have been studied these spaces in depth. These spaces have also been 

considered by several other authors. The  first  result  for  a  contractive  self-mapping  on a Menger PM  

space  was  obtained  by  Sehgal  and  Bharucha  Reid  [3].   Let (X,F)  be  PM  space  and :f X X be 

a mapping. Then f is said to contraction if   (0 1)  s.t.   ,k p q X    , 
( ) ( )( ) ( ) ,  0f p f q pqF kx F x x 

. Recently Piyush Kumar Tripathi [4], [5] defined dual contraction and using to it he proved some fixed 

point theorems. 

 

2.1 DEFINITION: Let (X,F,t) be a Menger space. A mapping :f X X is called dual contraction if 

  1k  such that ( ) ( )fpfq pqF kx F x , x > 0  

2.3 THEOREM: Let (X,F,t) be complete Menger space. Suppose :f X X is onto and continuous 

mapping satisfying the condition of dual contraction.  Then f has a unique   fixed point.  

 

Piyush Kumar Tripathi [4] also proved the following lemma which is used in our results.  

 

2.1 Lemma: Let (X,F,t) be a Menger space, where t is continuous. If   1k   such that  

 2 ( ) ( ) , 0pfpfpf p
F kx F x x  .  Suppose   :f X X is onto mapping then    a Cauchy sequence in X. 

 

MAIN RESULTS 
In this section, we have also prove some fixed point theorems under different contractive conditions using 

contraction constant k > 1 or k < 1. 

 

3.1 THEOREM: Let (X,F;t) be a complete Menger probabilistic metric space where ,p qF   is        strictly 

increasing distribution function and :f X X is continuous mapping. If  (0,1)k  s. t. 

2( ), ( ) , , ( ) , ( ) , ( ) ( ), ( )
( ) min{ ( ), ( ), ( ), ( ), }f p f q p q p f p q f q q f p f q f p

F kx F x F x F x F x F . 

 

Then  a unique fixed point.    

 

PROOF: Let 0p X . Construct a sequence pn  = f (pn-1), n = 1,2,3 ……………….Then 
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Therefore by lemma 2.1{Pn }is a Cauchy sequency. Since (X,F,t) is complete  so np p X  .Then by theorem 

2.1, p is a unique fixed point of f. For uniqueness suppose f(p ) = p, f(q) = q. Then   

 , ( ), ( ) , , , , ,( ) ( ) min ( ), ( ), ( ), ( ), ( )p q f p g q p q p p q q q p q pF kx F x F x F x F x F x F x  i.e. 
,( ) ( )pq p qF kx F x .  

Which is not possible so p = q. Because ,p qF  is strictly increasing function and kx < 0   

 

3.2 Theorem: Let (X,F;t) be a complete Menger probabilistic metric space where ,p qF  is   strictly increasing 

distribution function and , :f g X X is continuous mapping. If  (0,1)k  such that 

 ( ), ( ) , , ( ) , ( )( ) min ( ), ( ), ( )f p g q p q p f p q g qF kx F x F x F x .Then f and g  have a unique common fixed point. 

 

PROOF. Let 0p X . Construct a sequence {pn} defined by  f(p2n ) = p2n+1, g(p2n+1) =p2n+2 ,   n = 

1,2,3………………..If n = 2r + 1 then 
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Therefore by lemma 2.1.1,{pn}is a Cauchy sequence. Then np p X  . Since    2 1 2,n np p is subsequence 

of  np so 2 1 2,n np p p p   . Then f( p ) = p and g( p ) = p that is p is common fixed point of f and g. For 

uniqueness suppose p and q are two common fixed-point f and g. Then, 

, ( ), ( ) , , , , ,( ) ( ) min{ ( ), ( ), ( )} ( ) ( )p q f p g q p q p p q q p q p qF kx F kx F x F x F kx F kx F x    , which is not 

possible because ,p qF  is strictly increasing function and kx < x . Therefore  f and g have unique common fixed 

point. 
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